R/wrapper3D.R
get.section.densities.3d.Rd
Creates a list consisting of the 3 dimensional probability distribution cube for turning angle, lift angle and step length (turnLiftStepHist) as well as the uni-dimensional distributions of the differences of the turning angles, lift angles and step lengths with a lag of 1 to maintain minimal level of autocorrelation in each of the terms.
get.section.densities.3d(
trackSections,
gradientDensity = TRUE,
heightDistEllipsoid = TRUE,
DEM = NULL,
maxBin = 25
)
list of track sections got by the track.split.3d function
logical: Should a distribution of the gradient angle be extracted and later used in the simulations?
logical: Should a distribution of the flight height over ellipsoid be extracted and later used in the sim.cond.3d()?
a raster containing a digital elevation model, covering the same extent as the track sections
numeric scalar, maximum number of bins per dimension of the tld-cube (turnLiftStepHist)
A list containing the tldCube and the autodifferences functions (and additionally the height distribution function)
get.section.densities.3d(list(niclas[1:10, ], niclas[11:nrow(niclas), ]))
#> |TLD cube dimensions: 7 x 14 x 3
#> $tldCube
#> $tldCube$values
#> turn lift step prob
#> 2 -0.40356937 -0.26142679 1865.097 0.03448276
#> 11 0.26988291 -0.13612579 1865.097 0.03448276
#> 15 -0.17908527 -0.09445602 1865.097 0.03448276
#> 16 0.04539882 -0.09445602 1865.097 0.03448276
#> 20 -0.40356937 -0.05278625 1865.097 0.03448276
#> 23 0.26988291 -0.05278625 1865.097 0.03448276
#> 28 0.04539882 -0.01111648 1865.097 0.06896552
#> 33 -0.17908527 0.03055329 1865.097 0.03448276
#> 37 -0.85332325 0.07222306 1865.097 0.03448276
#> 70 0.04539882 -0.09445602 3707.217 0.03448276
#> 82 0.04539882 -0.01111648 3707.217 0.03448276
#> 90 0.49515270 0.03055329 3707.217 0.03448276
#> 102 0.49515270 0.11389283 3707.217 0.03448276
#> 128 -0.40356937 -0.05278625 5549.338 0.03448276
#> 135 -0.17908527 -0.01111648 5549.338 0.10344828
#> 136 0.04539882 -0.01111648 5549.338 0.06896552
#> 138 0.49515270 -0.01111648 5549.338 0.03448276
#> 141 -0.17908527 0.03055329 5549.338 0.03448276
#> 142 0.04539882 0.03055329 5549.338 0.06896552
#> 143 0.26988291 0.03055329 5549.338 0.03448276
#> 144 0.49515270 0.03055329 5549.338 0.03448276
#> 148 0.04539882 0.07222306 5549.338 0.03448276
#> 154 0.04539882 0.11389283 5549.338 0.03448276
#> 162 0.49515270 0.28086360 5549.338 0.03448276
#>
#> $tldCube$tRes
#> [1] 0.2244841
#>
#> $tldCube$lRes
#> [1] 0.04166977
#>
#> $tldCube$dRes
#> [1] 1839.362
#>
#>
#> $autoT
#> function (v)
#> .approxfun(x, y, v, method, yleft, yright, f, na.rm)
#> <bytecode: 0x55c6094100b8>
#> <environment: 0x55c60a9d8970>
#>
#> $autoL
#> function (v)
#> .approxfun(x, y, v, method, yleft, yright, f, na.rm)
#> <bytecode: 0x55c6094100b8>
#> <environment: 0x55c60a995650>
#>
#> $autoD
#> function (v)
#> .approxfun(x, y, v, method, yleft, yright, f, na.rm)
#> <bytecode: 0x55c6094100b8>
#> <environment: 0x55c60a975fc8>
#>
#> $gDens
#> function (v)
#> .approxfun(x, y, v, method, yleft, yright, f, na.rm)
#> <bytecode: 0x55c6094100b8>
#> <environment: 0x55c60a958f88>
#>
#> $hDistEllipsoid
#> function (v)
#> .approxfun(x, y, v, method, yleft, yright, f, na.rm)
#> <bytecode: 0x55c6094100b8>
#> <environment: 0x55c60a912030>
#>
#> $hDistTopo
#> function (x)
#> {
#> 1
#> }
#> <bytecode: 0x55c609266c40>
#> <environment: 0x55c60abaed20>
#>