Creates multiple conditional empirical random walks, with a specific starting and ending point, geometrically similar to the initial trajectory by applying sim.cond.3d multiple times.
n.sim.cond.3d(
n.sim,
n.locs,
start = c(0, 0, 0),
end = start,
a0,
g0,
densities,
qProbs,
error = FALSE,
parallel = FALSE,
DEM = NULL,
BG = NULL
)
number of CERWs to simulate
length of the trajectory in locations
numeric vector of length 3 with the coordinates of the start point
numeric vector of length 3 with the coordinates of the end point
initial incoming heading in radian
initial incoming gradient/polar angle in radian
list object returned by the get.densities.3d function
list object returned by the qProb.3d function
logical: add random noise to the turn angle, lift angle and step length to account for errors measurements?
logical: run computations in parallel (n-1 cores)? Or numeric: the number of nodes (maximum: n - 1 cores)
raster layer containing a digital elevation model, covering the area between start and end point
a background raster layer that can be used to inform the choice of steps
A list containing the CERWs or NULL
s if dead ends have been encountered.
niclas <- track.properties.3d(niclas)
n.locs <- 3
P <- get.track.densities.3d(niclas)
#> |TLD cube dimensions: 9 x 14 x 3
f <- 1500
start <- Reduce(c, niclas[1, 1:3])
end <- Reduce(c, niclas[n.locs, 1:3])
a0 <- niclas$a[1]
g0 <- niclas$g[1]
uerw <- sim.uncond.3d(
n.locs * f, start = start, a0 = a0, g0 = g0, densities = P
)
#> |Simulate UERW with 4500 steps
#>
|
| | 0%
|
|==== | 5%
|
|======= | 10%
|
|=========== | 15%
|
|============== | 20%
|
|================== | 25%
|
|===================== | 30%
|
|========================= | 35%
|
|============================ | 40%
|
|================================ | 45%
|
|=================================== | 50%
|
|======================================= | 55%
|
|========================================== | 60%
|
|============================================== | 65%
|
|================================================= | 70%
|
|===================================================== | 75%
|
|======================================================== | 80%
|
|============================================================ | 85%
|
|=============================================================== | 90%
|
|=================================================================== | 95%
|
|======================================================================| 100%
#> |Elapsed time: 0.3s
Q <- qProb.3d(uerw, n.locs)
#> |Extracting Q probabilities for 3 steps
#>
|
| | 0%
|
|======================================================================| 100%
#> |Elapsed time: 0s
n.sim.cond.3d(
n.sim = 2, n.locs = n.locs,
start = start, end = end,
a0 = a0, g0 = g0,
densities = P, qProbs = Q
)
#> |Simulate 2 CERWs with 3 steps
#>
|
| | 0%
|
| | 0%
|
|======================================================================| 100%
#>
|
|=================================== | 50%
|
| | 0%
|
|======================================================================| 100%
#>
|
|======================================================================| 100%
#> |Elapsed time: 0.1s
#> [[1]]
#> x y z a g t l d
#> 1 2556476 1188336 1283.736 0.3914766 1.557032 0.01087508 -0.009858383 NA
#> 2 2561433 1190823 1414.762 0.4650999 1.547173 0.07362330 -0.009858383 5547.047
#> 3 2560477 1189861 1369.713 NA NA NA NA 1357.124
#> p
#> 1 NA
#> 2 1.81689e-17
#> 3 NA
#>
#> [[2]]
#> x y z a g t l
#> 1 2556476 1188336 1283.736 0.3914766 1.557032 -0.05187315 0.059190899
#> 2 2560446 1190328 1388.677 0.4650999 1.547173 0.07362330 -0.009858383
#> 3 2560477 1189861 1369.713 NA NA NA NA
#> d p
#> 1 NA NA
#> 2 4442.7296 8.698607e-18
#> 3 468.6208 NA
#>